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Overview

I Nash equilibrium requires that each player has a correct belief about
the other players’ strategy choices and behaves optimally given her
belief. This is too restrictive in the sense that it rules out behaviors
that do not contradict the rationality of the players.

I Bernheim (1984) and Pearce (1984) independently propose the
solution concept called rationalizability as an appropriate criterion
for choosing rational behavior in noncooperative strategic situations.

I Here I generalize the concept of rationalizability by using sets of
probabilities to model uncertainty in games, and examine how game
theory can be informed by incorporating imprecise probability.

Game-Theoretic Preliminaries

I A finite normal form game G = 〈I, {Si}, {ui}〉i∈I consists of:
I I: a finite set of players who make decisions
I Si: a finite set of actions of player i (pure strategies)
I ui : S → R denotes player i’s payoff function, where S =

∏
i∈I Si.

I Let ∆i denote the set of player i’s mixed strategies, which can be
regarded as probability measures on Si.

Basic Notions

I Basically, the solution concept rationalizability captures the idea of
rational behavior constrained only by the common knowledge that
each player maximizes expected utility with respect to a single
personal probability distribution representing uncertainty.

I A belief of player i about the other players’ strategy choices is a
probability distribution over the set of actions S−i =

∏
j 6=i Sj.

I A strategy δi ∈ ∆i is said to be rational if there exists a belief
δ−i ∈ ∆−i such that δi maximizes player i’s expected payoff. In
this case, δi is called a best response to the belief δ−i.

Definition: Rationalizability

In a game G, an action si of player i is rationalizable if for each player
j ∈ I there exists a set Zj of actions such that

1. si ∈ Zi,
2. For each player j ∈ I, every action sj in Zj is a best response to a

belief of player j that assigns positive probability only to those
actions in Z−j.

Properties of Rationalizable Actions

I Proposition: Every action used with positive probability in some
mixed strategy Nash equilibrium is rationalizable.

I It immediately follows from the existence of Nash equilibrium for
finite games that rationalizable actions always exists.

I Corollary: In finite games, each player i’s set of rationalizable
actions is nonempty.

Algorithm for Rationalizability

Proposition: The set of strategy profiles survives iterated elimination
of strictly dominated actions is equal to the set of profiles of
rationalizable actions.

I Note that row player’s action M is never
a best response to any precise conjecture
over {L,R}.

I Thus, the only rationalizable actions for
both players are D and R respectively.

L R
U 10, 1 0, 2
M 4, 10 4, 1
D 0, 1 10, 2

Rationalizability under Uncertainty

I In analogy with rationalizability, the new solution concept we call
Γ-maximin rationalizability captures the idea that each player
believes that her opponents maximize their own minimun expected
payoff with respect to their conjectures about the other players’
strategy choices.

I A conjecture C−i of player i about her opponents’ strategy choices
is represented by a nonempty, closed, and convex set of probability
measures on S−i.

I A strategy δi ∈ ∆i is called rational under uncertainty if there
exists a conjecture C−i such that δi maximizes player i’s minimum
expected payoff with respect to C−i. In this case, we say that δi is
Γ-maximin admissible relative to C−i.

Definition: Γ-maximin Rationalizability

In a game G, an action si of player i is Γ-maximin rationalizable if for
each player j ∈ I there exists a set Aj of actions such that

1. si ∈ Ai,

2. For each player j ∈ I, every action sj in Aj is Γ-maximin
admissible relative to a conjecture C−j of player j such that each
probability measure in C−j assigns positive probability only to those
actions in A−j.

Properties of Γ-maximin Rationalizability

I Proposition: In finite games, each player i’s set of Γ-maximin
rationalizable actions is nonempty.

I The decision rule Γ-maximin has maximization of expected payoff
as a special case when probability is determinate, i.e., when P
contains a single probability distribution.

I Corollary: For each player i, if player i’s action δi is rationalizable,
then it is Γ-maximin rationalizable.

Example: Difference from Rationalizability

Consider again the game mentioned above. Now assume that each
player’s feasible options are pure strategies only, that is, explicit
randomization is excluded.

I Recall that only D and R are
rationalizable.

I However, all actions of both player
are Γ-maximin rationalizable,
especially the action M .

L R
U 10, 1 0, 2
M 4, 10 4, 1
D 0, 1 10, 2

I Let us verify how the action M can be Γ-maximin rationalized in
the sense defined above.
I Consider the sets of actions: A1 = {U,M} and A2 = {L,R}.
I Let the corresponding conjecture sets: C1 = {P1(·) : 0 ≤ P1(R) ≤ 3

5
} and

C2 = {P2(·) : P2(D) = 0, 0 ≤ P2(U) ≤ 1}.
I Both U and M are Γ-maximin admissible relative to C1; and both L and R

are Γ-maximin admissible relative to C2.

Properties Continued

I When is the notion of rationalizability equivalent to the concept of
Γ-maximin rationalizability?

I Proposition: If each player’s choice set is convex, then the set of
rationalizable actions is equal to the set of Γ-maximin rationalizable.

I It has been shown (Walley, 1990) that when the choice set is convex
and the convex set of probabilities P is closed, then Γ-maximin
admissible options are Bayes-admissible.
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